

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 +61 3 8564 5000 NATA# 1261

Geelong Sydney 19/8 Lewalan Street 179 Magowar Road Grovedale Girraween VIC 3216 NSW 2145 +61 3 8564 5000 +61 2 9900 8400 NATA# 1261 NATA# 1261 Site# 25403 Site# 18217

Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 +61 2 6113 8091 NATA# 1261 Site# 25466

1/21 Smallwood Place T: +61 7 3902 4600 NATA# 1261 Site# 20794 & 2780

Brisbane

Murarrie

QLD 4172

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 +61 2 4968 8448 NATA# 1261 Site# 25079

Eurofins ARL Pty Ltd ABN: 91 05 0159 898 Perth

Welshpool

WA 6106

NATA# 2377

+61 8 6253 4444

Site# 2370 & 2554

46-48 Banksia Road

Auckland (Focus) 35 O'Rorke Road Unit C1/4 Pacific Rise. Mount Wellington, Auckland 1061 Auckland 1061 +64 9 526 4551 +64 9 525 0568 IANZ# 1308

Received:

Eurofins Environment Testing NZ Ltd

NZBN: 9429046024954

Auckland

Penrose,

IANZ# 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 +64 3 343 5201 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, Tauranga 3112 +64 9 525 0568 IANZ# 1402

email: EnviroSales@eurofinsanz.com

web: www.eurofins.com.au

Site# 1254 Company Name: QR Print Management

Address

IW HUNTER

Project Name: Project ID:

1v2

Order No.:

Report #: Phone:

Fax:

1168582

Due: Priority: Contact Name:

Dec 6, 2024 1:00 PM Dec 13, 2024

5 Day Dr Michael Walton

Eurofins Analytical Services Manager: Bonnie Pu

		Sa	mple Detail			Per- and Polyfluoroalkyl Substances (PFASs) - Trace	
Sydney Laboratory - NATA # 1261 Site # 18217							
Exte	rnal Laboratory						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	Sample 1 LTP	Dec 06, 2024		Water	N24-De0015996	Х	
2	Sample 2 PDSW	Dec 06, 2024		Water	N24-De0015997	х	
Test	Counts				<u> </u>	2	

QR Print Management

NATA Accredited Accreditation Number 1261 Site Number 18217

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Paul Rooms

Report 1168582-W
Project name IW HUNTER

Project ID 1v2

Received Date Dec 06, 2024

Client Sample ID Sample Matrix			Sample 1 LTP Water N24-	Sample 2 PDSW Water N24-
Eurofins Sample No.			De0015996	De0015997
Date Sampled			Dec 06, 2024	Dec 06, 2024
Test/Reference	LOR	Unit		
PFASs Summations				
Sum (PFHxS + PFOS)*	0.001	ug/L	< 0.001	0.491
Sum of enHealth PFAS (PFHxS + PFOS + PFOA)*	0.001	ug/L	< 0.001	0.539
Sum of PFASs (n=30)*	0.005	ug/L	< 0.005	0.569
Sum of US EPA PFAS (PFOS + PFOA)*	0.001	ug/L	< 0.001	0.488
Sum of WA DWER PFAS (n=10)*	0.005	ug/L	< 0.005	0.549
Perfluoroalkyl sulfonamido substances- Trace				
Perfluorooctane sulfonamide (FOSA) ^{N11}	0.005	ug/L	< 0.005	< 0.005
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA) ^{N11}	0.005	ug/L	< 0.005	< 0.005
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA) ^{N11}	0.005	ug/L	< 0.005	< 0.005
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE) ^{N11}	0.005	ug/L	< 0.005	< 0.005
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N- EtFOSE) ^{N11}	0.005	ug/L	< 0.005	< 0.005
N-ethyl-perfluorooctanesulfonamidoacetic acid (N- EtFOSAA) ^{N11}	0.005	ug/L	< 0.005	< 0.005
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA) ^{N11}	0.005	ug/L	< 0.005	< 0.005
13C8-FOSA (surr.)	1	%	96	79
D3-N-MeFOSA (surr.)	1	%	87	95
D5-N-EtFOSA (surr.)	1	%	85	92
D7-N-MeFOSE (surr.)	1	%	88	84
D9-N-EtFOSE (surr.)	1	%	88	91
D5-N-EtFOSAA (surr.)	1	%	104	104
D3-N-MeFOSAA (surr.)	1	%	83	93
Perfluoroalkyl carboxylic acids (PFCAs) - Trace				
Perfluorobutanoic acid (PFBA) ^{N11}	0.005	ug/L	< 0.005	< 0.005
Perfluoropentanoic acid (PFPeA) ^{N11}	0.001	ug/L	< 0.001	0.003
Perfluorohexanoic acid (PFHxA) ^{N11}	0.001	ug/L	< 0.001	0.004
Perfluoroheptanoic acid (PFHpA) ^{N11}	0.001	ug/L	< 0.001	0.003
Perfluorooctanoic acid (PFOA) ^{N11}	0.001	ug/L	< 0.001	0.048
Perfluorononanoic acid (PFNA) ^{N11}	0.001	ug/L	< 0.001	0.005
Perfluorodecanoic acid (PFDA) ^{N11}	0.001	ug/L	< 0.001	0.001
Perfluorotridecanoic acid (PFTrDA)N15	0.001	ug/L	< 0.001	< 0.001
Perfluoroundecanoic acid (PFUnDA) ^{N11}	0.001	ug/L	< 0.001	< 0.001
Perfluorododecanoic acid (PFDoDA) ^{N11}	0.001	ug/L	< 0.001	< 0.001

Client Sample ID			Sample 1 LTP	Sample 2 PDSW
Sample Matrix			Water N24-	Water N24-
Eurofins Sample No.			De0015996	De0015997
Date Sampled			Dec 06, 2024	Dec 06, 2024
Test/Reference	LOR	Unit		
Perfluoroalkyl carboxylic acids (PFCAs) - Trace	•	•		
Perfluorotetradecanoic acid (PFTeDA)N11	0.001	ug/L	< 0.001	< 0.001
13C4-PFBA (surr.)	1	%	92	76
13C5-PFPeA (surr.)	1	%	86	55
13C5-PFHxA (surr.)	1	%	108	81
13C4-PFHpA (surr.)	1	%	104	78
13C8-PFOA (surr.)	1	%	112	76
13C5-PFNA (surr.)	1	%	106	75
13C6-PFDA (surr.)	1	%	97	73
13C2-PFUnDA (surr.)	1	%	97	74
13C2-PFDoDA (surr.)	1	%	87	83
13C2-PFTeDA (surr.)	1	%	71	94
Perfluoroalkyl sulfonic acids (PFSAs)- Trace				
Perfluorobutanesulfonic acid (PFBS) ^{N11}	0.001	ug/L	< 0.001	< 0.001
Perfluorononanesulfonic acid (PFNS)N15	0.001	ug/L	< 0.001	0.002
Perfluoropropanesulfonic acid (PFPrS)N15	0.001	ug/L	< 0.001	< 0.001
Perfluoropentanesulfonic acid (PFPeS)N15	0.001	ug/L	< 0.001	< 0.001
Perfluorohexanesulfonic acid (PFHxS) ^{N11}	0.001	ug/L	< 0.001	0.051
Perfluoroheptanesulfonic acid (PFHpS)N15	0.001	ug/L	< 0.001	0.012
Perfluorooctanesulfonic acid (PFOS) ^{N11}	0.001	ug/L	< 0.001	0.44
Perfluorodecanesulfonic acid (PFDS)N15	0.001	ug/L	< 0.001	< 0.001
13C3-PFBS (surr.)	1	%	104	96
18O2-PFHxS (surr.)	1	%	102	82
13C8-PFOS (surr.)	1	%	101	79
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)- Trac	е			
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA) ^{N11}	0.001	ug/L	< 0.001	< 0.001
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA) ^{N11}	0.005	ug/L	< 0.005	< 0.005
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA) ^{N11}	0.001	ug/L	< 0.001	< 0.001
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA) ^{N11}	0.001	ug/L	< 0.001	< 0.001
13C2-4:2 FTSA (surr.)	1	%	127	159
13C2-6:2 FTSA (surr.)	1	%	158	163
13C2-8:2 FTSA (surr.)	1	%	114	157
13C2-10:2 FTSA (surr.)	1	%	102	178

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
PFASs Summations	Sydney	Dec 06, 2024	
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) - low level			
Perfluoroalkyl sulfonamido substances- Trace	Sydney	Dec 12, 2024	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) - low level			
Perfluoroalkyl carboxylic acids (PFCAs) - Trace	Sydney	Dec 12, 2024	28 Day
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) - low level			
Perfluoroalkyl sulfonic acids (PFSAs)- Trace	Sydney	Dec 12, 2024	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) - low level			
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)- Trace	Sydney	Dec 12, 2024	28 Days
- Method: LTM-ORG-2100 Per- and Polyfluoroalkyl Substances (PFAS) - low level			

email: EnviroSales@eurofinsanz.com

Eurofins Environment Testing Australia Pty Ltd

Site# 25403

Sample Detail

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South

+61 3 8564 5000

VIC 3175

NATA# 1261

Site# 1254

Geelong 19/8 Lewalan Street Grovedale VIC 3216 +61 3 8564 5000 NATA# 1261

Sydney 179 Magowar Road Girraween Mitchell NSW 2145 +61 2 9900 8400 NATA# 1261 Site# 18217

Canberra Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Murarrie ACT 2911 QLD 4172 T: +61 7 3902 4600 +61 2 6113 8091 NATA# 1261 NATA# 1261 Site# 20794 & 2780 Site# 25466

Per- and Polyfluoroalkyl Substances (PFASs)
- Trace

Χ

Χ

LAB ID

N24-De0015996

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 +61 2 4968 8448 NATA# 1261 Site# 25079

Perth 46-48 Banksia Road Welshpool WA 6106 +61 8 6253 4444 NATA# 2377 Site# 2370 & 2554

Eurofins ARL Pty Ltd

ABN: 91 05 0159 898

NZBN: 9429046024954 Auckland 35 O'Rorke Road

Penrose,

Auckland 1061

+64 9 526 4551

IANZ# 1327

Auckland (Focus) Unit C1/4 Pacific Rise. Mount Wellington, Auckland 1061 +64 9 525 0568 IANZ# 1308

Eurofins Environment Testing NZ Ltd

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 +64 3 343 5201 IANZ# 1290

Tauranga 1277 Cameron Road. Gate Pa, Tauranga 3112 +64 9 525 0568 IANZ# 1402

OD Drint M Order No.: Received: Dec 6 2024 1:00 PM

> Fax: **Contact Name:** Dr Michael Walton

> > **Eurofins Analytical Services Manager: Bonnie Pu**

Company Name:	OR Print Management
A dida	

Address:

web: www.eurofins.com.au

IW HUNTER

Project Name: Project ID:

External Laboratory

No

Sample ID

1v2

Sydney Laboratory - NATA # 1261 Site # 18217

Sample 1 LTP | Dec 06, 2024

Sample Date

Sample 2 Dec 06, 2024 Water N24-De0015997 Χ PDSW 2 **Test Counts**

Sampling

Time

Matrix

Water

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follow guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013. They are included in this QC report where applicable. Additional QC data may be available on request
- 2. Unless otherwise stated, all soil/sediment/solid results are reported on a dry weight basis.
- 3. Unless otherwise stated, all biota/food results are reported on a wet weight basis on the edible portion.
- 4. For CEC results where the sample's origin is unknown or environmentally contaminated, the results should be used advisedly.
- Actual LORs are matrix dependent. Quoted LORs may be raised where sample extracts are diluted due to interferences
- Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds where annotated.
- 7. SVOC analysis on waters is performed on homogenised, unfiltered samples unless noted otherwise.
- 8. Samples were analysed on an 'as received' basis.
- 9. Information identified in this report with blue colour indicates data provided by customers that may have an impact on the results.
- 10. This report replaces any interim results previously issued.

Holding Times

Please refer to the 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours before sample receipt deadlines as stated on the SRA

If the Laboratory did not receive the information in the required timeframe, and despite any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the sampling date: therefore, compliance with these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether, the holding time is seven days; however, for all other VOCs, such as BTEX or C6-10 TRH, the holding time is 14 days

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre ppm: parts per million μg/L: micrograms per litre ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

Colour: Pt-Co Units (CU) CFU: Colony Forming Unit

Terms

APHA American Public Health Association CEC Cation Exchange Capacity COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report CRM Certified Reference Material (ISO17034) - reported as percent recovery.

Dry Where moisture has been determined on a solid sample, the result is expressed on a dry weight basis

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank In the case of solid samples, these are performed on laboratory-certified clean sands and in the case of water samples, these are performed on de-ionised water NCP Non-Client Parent - QC performed on samples not pertaining to this report, QC represents the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis SPIKE Addition of the analyte to the sample and reported as percentage recovery

SRA Sample Receipt Advice

The addition of a similar compound to the analyte target is reported as percentage recovery. See below for acceptance criteria Surr - Surrogate

Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment; however, free tributyltin was measured, and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits. TRTO

TCI P Toxicity Characteristic Leaching Procedure TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 6.0

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should only be used as a guide and may be different when site-specific Sampling Analysis and Quality Plan (SAQP) have been implemented.

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is ≤30%; however, the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50% Results >20 times the LOR: RPD must lie between 0-30%

NOTE: pH duplicates are reported as a range, not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS. SVOCs recoveries 20 - 150%, VOC recoveries 50 - 150%

PFAS field samples containing surrogate recoveries above the QC limit designated in QSM 6.0, where no positive PFAS results have been reported or reviewed, and no data was affected.

QC Data General Comments

- 1. Where a result is reported as less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown are not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery, the term "INT" appears against that analyte.
- 5. For Matrix Spikes and LCS results, a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data; thus, it is possible to have two sets of data

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank				,	
Perfluoroalkyl sulfonamido substances- Trace	ı				
Perfluorooctane sulfonamide (FOSA)	ug/L	< 0.005	0.005	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	ug/L	< 0.005	0.005	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	ug/L	< 0.005	0.005	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-MeFOSE)	ug/L	< 0.005	0.005	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	ug/L	< 0.005	0.005	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	ug/L	< 0.005	0.005	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	ug/L	< 0.005	0.005	Pass	
Method Blank					
Perfluoroalkyl carboxylic acids (PFCAs) - Trace					
Perfluorobutanoic acid (PFBA)	ug/L	< 0.005	0.005	Pass	
Perfluoropentanoic acid (PFPeA)	ug/L	< 0.001	0.001	Pass	
Perfluorohexanoic acid (PFHxA)	ug/L	< 0.001	0.001	Pass	
Perfluoroheptanoic acid (PFHpA)	ug/L	< 0.001	0.001	Pass	
Perfluorooctanoic acid (PFOA)	ug/L	< 0.001	0.001	Pass	
Perfluorononanoic acid (PFNA)	ug/L	< 0.001	0.001	Pass	
Perfluorodecanoic acid (PFDA)	ug/L	< 0.001	0.001	Pass	
Perfluorotridecanoic acid (PFTrDA)	ug/L	< 0.001	0.001	Pass	
Perfluoroundecanoic acid (PFUnDA)	ug/L	< 0.001	0.001	Pass	
Perfluorododecanoic acid (PFDoDA)	ug/L	< 0.001	0.001	Pass	
Perfluorotetradecanoic acid (PFTeDA)	ug/L	< 0.001	0.001	Pass	
Method Blank					
Perfluoroalkyl sulfonic acids (PFSAs)- Trace					
Perfluorobutanesulfonic acid (PFBS)	ug/L	< 0.001	0.001	Pass	
Perfluorononanesulfonic acid (PFNS)	ug/L	< 0.001	0.001	Pass	
Perfluoropropanesulfonic acid (PFPrS)	ug/L	< 0.001	0.001	Pass	
Perfluoropentanesulfonic acid (PFPeS)	ug/L	< 0.001	0.001	Pass	
Perfluorohexanesulfonic acid (PFHxS)	ug/L	< 0.001	0.001	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	ug/L	< 0.001	0.001	Pass	
Perfluorooctanesulfonic acid (PFOS)	ug/L	< 0.001	0.001	Pass	
Perfluorodecanesulfonic acid (PFDS)	ug/L	< 0.001	0.001	Pass	
Method Blank	l ag/E	V 0.001	0.001	1 400	
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)- Trace				Т	
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	ug/L	< 0.001	0.001	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA)	ug/L	< 0.005	0.005	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	ug/L	< 0.003	0.003	Pass	
1H.1H.2H.2H-perfluorodoecanesulfonic acid (10:2 FTSA)	ug/L	< 0.001	0.001	Pass	
LCS - % Recovery	ug/L	< 0.001	0.001	1 033	
Perfluoroalkyl sulfonamido substances- Trace					
Perfluorooctane sulfonamide (FOSA)	%	100	50-150	Pass	
N-methylperfluoro-1-octane sulfonamide (N-MeFOSA)	%	116	50-150	Pass	
N-ethylperfluoro-1-octane sulfonamide (N-EtFOSA)	%	110	50-150	Pass	
2-(N-methylperfluoro-1-octane sulfonamido)-ethanol(N-	/0	110	50-150	1.499	
MèFOSE) '	%	108	50-150	Pass	
2-(N-ethylperfluoro-1-octane sulfonamido)-ethanol(N-EtFOSE)	%	110	50-150	Pass	
N-ethyl-perfluorooctanesulfonamidoacetic acid (N-EtFOSAA)	%	96	50-150	Pass	
N-methyl-perfluorooctanesulfonamidoacetic acid (N-MeFOSAA)	%	102	50-150	Pass	
LCS - % Recovery					
Perfluoroalkyl carboxylic acids (PFCAs) - Trace	I				
Perfluorobutanoic acid (PFBA)	%	102	50-150	Pass	
Perfluoropentanoic acid (PFPeA)	%	108	50-150	Pass	

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Perfluorohexanoic acid (PFHxA)	%	108	50-150	Pass	
Perfluoroheptanoic acid (PFHpA)	%	98	50-150	Pass	
Perfluorooctanoic acid (PFOA)	%	104	50-150	Pass	
Perfluorononanoic acid (PFNA)	%	108	50-150	Pass	
Perfluorodecanoic acid (PFDA)	%	114	50-150	Pass	
Perfluorotridecanoic acid (PFTrDA)	%	120	50-150	Pass	
Perfluoroundecanoic acid (PFUnDA)	%	116	50-150	Pass	
Perfluorododecanoic acid (PFDoDA)	%	118	50-150	Pass	
Perfluorotetradecanoic acid (PFTeDA)	%	112	50-150	Pass	
LCS - % Recovery					
Perfluoroalkyl sulfonic acids (PFSAs)- Trace					
Perfluorobutanesulfonic acid (PFBS)	%	98	50-150	Pass	
Perfluorononanesulfonic acid (PFNS)	%	94	50-150	Pass	
Perfluoropropanesulfonic acid (PFPrS)	%	78	50-150	Pass	
Perfluoropentanesulfonic acid (PFPeS)	%	82	50-150	Pass	
Perfluorohexanesulfonic acid (PFHxS)	%	100	50-150	Pass	
Perfluoroheptanesulfonic acid (PFHpS)	%	102	50-150	Pass	
Perfluorooctanesulfonic acid (PFOS)	%	100	50-150	Pass	
Perfluorodecanesulfonic acid (PFDS)	%	86	50-150	Pass	
LCS - % Recovery					
n:2 Fluorotelomer sulfonic acids (n:2 FTSAs)- Trace					
1H.1H.2H.2H-perfluorohexanesulfonic acid (4:2 FTSA)	%	102	50-150	Pass	
1H.1H.2H.2H-perfluorooctanesulfonic acid(6:2 FTSA)	%	114	50-150	Pass	
1H.1H.2H.2H-perfluorodecanesulfonic acid (8:2 FTSA)	%	110	50-150	Pass	
1H.1H.2H.2H-perfluorododecanesulfonic acid (10:2 FTSA)	%	106	50-150	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Nο Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

Isotope dilution is used for calibration of each native compound for which an exact labelled analogue is available (Isotope Dilution Quantitation). The isotopically labelled analogues allow identification and recovery correction of the concentration of the associated native PFAS compounds. N11

Where the native PFAS compound does not have labelled analogue then the quantification is made using the Extracted Internal Standard Analyte with the closest retention time to the analyte and no recovery correction has been made (Internal Standard Quantitation). N15

Authorised by:

Analytical Services Manager Nileshni Goundar Roopesh Rangarajan Senior Analyst-PFAS

Glenn Jackson **Managing Director**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.