

CO2CRC response to NSW inquiry into the economics of energy generation

REP(

Gustavo Fimbres Weihs, Minh Ho and Dianne Wiley

June 2012| CO2CRC Report No: RPT12-3537

FUDIES IN CCS

CO2CRC PARTICIPANTS

Core Research Participants

CSIRO Curtin University Geoscience Australia GNS Science Monash University Simon Fraser University University of Adelaide University of Melbourne University of New South Wales University of Western Australia

Industry & Government Participants

Anglo American ANLEC R&D **BG** Group **BHP** Billiton **BP** Developments Australia Brown Coal Innovation Australia Chevron Dept. of Primary Industries - Victoria Ministry of Science and Innovation INPEX KIGAM NSW Government Dept. Trade & Investment Queensland Energy Resources Ltd Queensland Government **Rio Tinto** SASOL Shell Solid Energy Stanwell Corporation Schlumberger Total Western Australia Dept. of Mines and Petroleum Xstrata Coal

Supporting Participants

Charles Darwin University Government of South Australia Lawrence Berkeley National Laboratory Process Group The Global CCS Institute University of Queensland

0000

()

Gustavo Fimbres Weihs, Minh Ho and Dianne Wiley

June 2012 CO2CRC Report No: RPT12-3537

Acknowledgements

We acknowledge funding provided by the Australian Government through its CRC program to support our CO2CRC research projects. We also thank other CO2CRC members who provided valuable comments on this report, particularly Dr Richard Aldous, Dr Peter Neal and Mr Barry Hooper.

Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC)

GPO Box 463 Ground Floor NFF House, 14-16 Brisbane Avenue, Barton ACT 2600 CANBE RRA ACT 2601 Phone: +61 2 6120 1600 Fax: +61 2 6273 7181 Email: info@co2crc.com.au Web: www.co2crc.com.au

Reference: **Fimbres Weihs, G, Ho M, Wiley, D**, 2012. *CO2CRC response to NSW Inquiry into the Economics of Energy Generation.* Cooperative Research Centre for Greenhouse Gas Technologies, Canberra, Australia, CO2CRC Publication Number RPT12-3537. 16pp

© CO2CRC 2012

Unless otherwise specified, the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) retains copyright over this publication through its incorporated entity, CO2CRC Ltd. You must not reproduce, distribute, publish, copy, transfer or commercially exploit any information contained in this publication that would be an infringement of any copyright, patent, trademark, design or other intellectual property right.

Requests and inquiries concerning copyright should be addressed to the Communications and Media Adviser, CO2CRC, GPO Box 463, CANBERRA, ACT, 2601. Telephone: +61 2 6120 1600.

Table of contents

Exe	ecutive summary	1
	Introduction	
	CO ₂ pipeline transport costs in NSW	
	2.1. Background	3
	2.2. Assumptions and methods	4
	2.3. Results and discussion	
	Cost of CCS projects	
	Conclusions	
	References	

Executive summary

This report presents high-level scoping study estimates of the cost of transporting CO_2 from New South Wales emission sources to several potential storage basins in eastern Australia. The estimated transport costs range from about A\$10 per tonne of CO_2 transported to the nearest basin, to A\$32 per tonne transported to the furthest basin. Transport costs are mainly driven by the distance between the emission sources and the storage basin location. Using a pipeline network is important for reducing costs.

The pipeline cost estimates reported here do not include the costs of capture or storage and, therefore, are only one component of the total cost of capturing, transporting, injecting and storing the CO_2 for each of the basins considered. So these pipeline cost estimates should not be used as the sole basis for selecting either the pipeline network configuration or the CO_2 storage location. For sites with favourable characteristics, storage costs may only be a small component of the total cost, but this could increase by up to 3 orders of magnitude for sites with unfavourable characteristics. In addition, the capture costs currently constitute about 60 - 80 % of the total costs and therefore have a significant impact on a decision to progress with an integrated CCS project.

The estimates presented in this report are subject to large uncertainties, are only indicative and could change substantially over time as technologies, equipment costs and other variables change. They are based on rule-of-thumb techniques for estimating equipment sizes and the costs of individual items of equipment and associated services. More detailed and extensive feasibility studies, based on more data, need to be undertaken before an investment decision in a CO_2 transport project could be made.

This report also summarises publicly available cost data for global CCS projects currently under operation as well as those in the execution, define and evaluation phases. The capital costs for 23 projects are summarised; however, the CCS operating costs for only one project are available in the public domain. The capital costs reported for the projects in the operation stage reflect the actual implementation costs for these projects. The values reported for projects in the execution, define and evaluation stages are based on feasibility studies, and as such are only indicative and could change substantially over time. It should also be noted that because operating costs are not available for the projects, it is not possible to evaluate total project costs per tonne of CO_2 captured over the lifetime of the project, which would be essential for making more direct comparisons between these and other projects. Furthermore, because the projects involve different emission sources, types of capture and storage locations, comparisons must be made cautiously, even for similar amounts of CO_2 captured or stored.

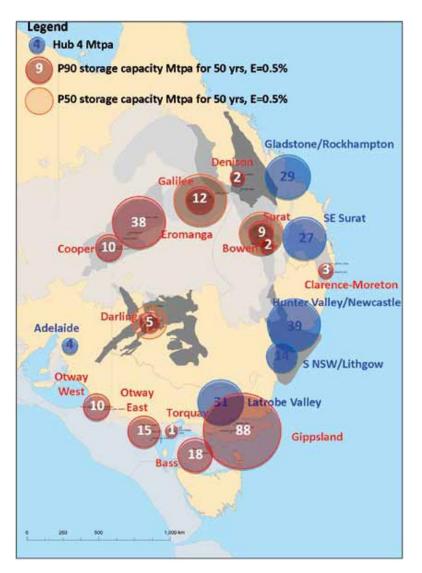
For the summarised projects, capital costs vary from as low as US\$100 million to over US\$3 billion for amounts of CO_2 from 0.1 million to almost 6 million tonnes per year. The projects cover CO_2 capture from natural gas processing, chemical plants, other industrial process and power plants. Note that some of the projects only report costs for some components in the CCS chain (capture, transport and/or storage) while others report the cost for the full chain.

Given that capture and storage of CO_2 from coal and natural gas fired power plants is essential for ensuring a reliable, low cost and low emission energy supply, governments need to be active in supporting CCS demonstration projects as well as developing the required legislative and regulatory frameworks. They also need to play a key role alongside industry and research organisations in reducing technical, financial and social risks.

1. Introduction

The Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) thanks the NSW Public Accounts Committee for this opportunity to provide responses to two questions on notice from the NSW Inquiry into Economics of Energy Generation in May 2012. The questions are:

- Can you provide the Committee with economic modelling on the costs of transporting CO₂ from New South Wales to other states?
- In projects currently underway around the world what does it cost to capture, transport and store a tonne of carbon dioxide?


This report provides estimates of the costs of pipeline transportation of carbon dioxide (CO₂) from emission sources in New South Wales to storage locations in New South Wales and other states. Data for the emission sources and geological basin locations was obtained from the National Greenhouse Gas Inventory [1] and the Carbon Storage Taskforce reports [2, 3, 4], respectively. While this data provides a good starting point for a comparative analysis, it is likely that this data will be modified as more detailed investigations progress, such as the NSW Storage Capacity Project [5]. This report provides data from a first-pass scoping study that does not attempt to design the pipelines in detail such as would be completed during a full project feasibility study. Because the study focuses on pipelines, we have not conducted any geological or reservoir engineering analysis of the storage sites and we have not completed any engineering optimisation of the capture technology for the emissions sources. The cost estimates presented in this report are subject to large uncertainties, are only indicative and could change substantially over time as technologies, equipment costs and other variables change. The assessment has been completed by the CO2CRC economics group based at the University of New South Wales (UNSW).

This report also provides a summary of large-scale carbon capture and storage (CCS) projects under active operation or in the planning stages. The projects were identified from the Global Carbon Capture and Storage Institute's (GCCSI) list of large-scale projects. We report the publicly available details and capital cost data but do not report the operating costs, as these are not publicly available except for one project. Where possible we have broken the capital cost down into the separate components for capture, transport and storage; otherwise, we have reported the total project costs.

2. CO₂ pipeline transport costs in NSW

2.1. Background

The Carbon Storage Taskforce, established under the National Low Emissions Coal Initiative, identified the location of the main CO_2 emission sources in Australia and the most likely storage basins for those emissions [2] (see Figure 1). An estimate of the cost to transport the CO_2 from each emission hub and to inject it in to several nearby basins was also provided [3]. However, not every emission hub-storage basin combination was evaluated.

Figure 1: Hub emission levels and basin storage capacity for Australia's eastern seaboard, as in [2]

The analysis by the Carbon Storage Taskforce [2] concluded that, based on data available at the time, most of the storage basins in New South Wales have very low storage capacity. The taskforce suggested that a possible exception is the Darling basin, located in central west New South Wales (Figure 1). This means that in order to transport CO_2 from emission sources in New South Wales to potential storage locations, up to 1,700 kilometres of large diameter pipelines would be required.

The analysis presented in this report extends our work on CO_2 transport costs completed for the Carbon Storage Taskforce. We estimate the costs of independent transport of CO_2 from each individual source in New South Wales to each of the potential storage basins ("independent transport"). These costs are then compared to the cost of transporting the combined emissions to each of the potential storage basins using a pipeline network ("network transport"). The potential storage basins cover on-shore locations in Queensland, New South Wales, Victoria and South Australia as well as off-shore locations in Victoria.

2.2. Assumptions and methods

For each case we estimate the equipment size, the capital, operating and decommissioning costs to obtain the cost of CO_2 transport per tonne per kilometre. The costs are reported as Australian dollars in 2011. These costs are based on limited data and have a margin of error typical of a scoping study of \pm 30%. This reflects the high degree of uncertainty in estimating individual cost items. The effects of financing, taxation and carbon price are not considered.

The main methods and assumptions used for the analysis are as follows and are standard conditions used in our comparative analyses [6]. Where possible, recommended IEA assumptions [7] are used. These may not be the same as those used in actual CCS projects.

- Data for CO₂ emission sources and storage locations is taken from the National Greenhouse Gas Inventory [1] and Carbon Storage Taskforce reports [2, 3, 4], respectively. The CO₂ is delivered ready for transport at 25 °C and 8 MPa.
- 2. Additional energy for recompression is provided from a newly built, natural gas-fired power plant. This new power plant does not have capture facilities.
- 3. The CO₂ is recompressed to a sufficiently high pressure (at least 8 MPa) to keep it in a supercritical state along the pipeline. The maximum pipeline pressure is 15 MPa.
- 4. The pipelines used to transport CO₂ are made from X65 carbon-steel line pipe. The maximum nominal pipeline diameter considered is 1,050 mm (42 inches). The effects of terrain and land use on pipeline construction costs are not considered. As in our earlier study [8], the pipelines follow the shortest possible routes.
- 5. We calculate the present value of the costs using a real discount rate of 7%, a project construction period of 3 years and an operation period of 25 years after which the project is decommissioned. The total cost of CO₂ transported in A\$ per tonne is calculated by dividing the present value of all costs by the present value of CO₂ transported.
- 6. In each case, we assume that all of the CO₂ is transported to one basin. In practice, it may be more cost effective to take the CO₂ to different basins.

Only transport economics are reported here. The economics of capture, compression to transportready conditions and storage are not included.

2.3. Results and discussion

For pipeline transport of CO_2 , Figure 2 shows that lower costs can be achieved by transporting larger amounts of CO_2 [9]. For example, for a flow rate of 0.3 million tonnes per year of CO_2 , transport costs are approximately 10 cents per tonne per kilometre. However, if this flow rate is tripled, then the transport cost per tonne per kilometre is reduced ten-fold. Consequently, a large trunkline pipeline network transporting CO_2 from multiple emission sources has the potential to improve the cost-effectiveness of transport.

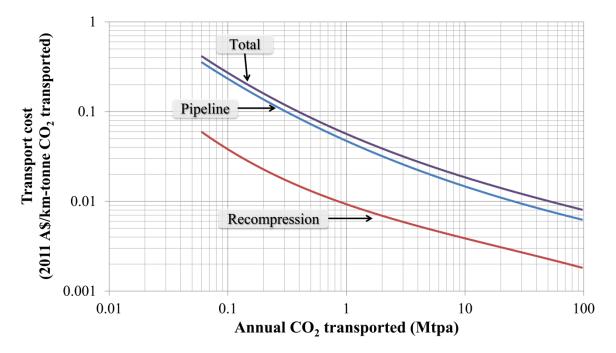


Figure 2: Relationship between the cost of onshore CO_2 transport and the amount of CO_2 transported.

The estimated costs for transporting CO_2 from the New South Wales emission sources to each of the potential storage basins are reported in Table 1. Figure 3 and Figure 4 depict illustrative examples of independent and network transport, respectively.

Because the cost estimates do not include the costs of capture or storage, they are only a part of the total cost of CCS for each of the basins considered. Given that capture costs vary greatly with emission source and capture technology and that storage costs can vary greatly from one storage basin to another, these estimates should not be used as the sole basis for selecting the CO_2 storage location. Moreover, the capture costs typically constitute 60 to 80 percent of the total costs at this point in time [8, 10, 11] and have a significant impact on a decision to progress with an integrated CCS project. In addition, it is important to note that some of the basins shown in Table 1 are not currently considered as being prospective for large-scale storage of CO_2 . This may be because the basins are small or because of their geological properties. Such issues are outside of the scope of this report and must be considered in selecting the CO_2 storage location.

The estimated present value of the cost of independent transport ranges from A\$8 billion to A\$16 billion, or about A\$15 to A\$32 per tonne of CO_2 transported. In contrast, the present value of the cost of network transport ranges from A\$5 billion to A\$9 billion, or about A\$10 to A\$19 per tonne of CO_2 transported. Thus, for New South Wales emissions, the cost of independent transport is significantly higher than for network transport (around 65 % higher). The difference in costs is larger for basins that are located further away from the emission sources.

storage basins in easte	rn Australia.	
	Present value cost (2011 A\$ billion)	Unit cost (2011A\$/tonne CO₂ transported)
Storage basin		

Table 1: Estimates of the cost for transporting CO ₂ from major emission sources in NSW to potential
storage basins in eastern Australia.

Storage basin	(2011 A\$		(2011A\$/tonne CO ₂ transported)			
otoruge busin	Independent transport	Network transport	Independent transport	Network transport		
Clarence-Moreton* (NSW)	8	5	15	10		
Bowen* (Qld)	9	6	18	12		
Surat [†] (Qld)	10	6	19	12		
Gippsland (Vic-offshore)	10	7	20	14		
Darling [†] (NSW)	11	7	22	14		
Otway-East (Vic-onshore)	14	8	27	16		
Torquay* (Vic-offshore)	13	8	26	16		
Denison (Qld)	14	8	28	17		
Galilee [†] (Qld)	15	9	29	17		
Otway-West (Vic-onshore)	15	9	30	17		
Bass (Vic-offshore)	14	9	28	18		
Cooper (SA)	16	9	32	18		
Eromanga (Qld)	16	9	32	19		

(*) Basins with a capacity of less than 25 % of NSW emissions over 50 years [2].

 $(^{\dagger})$ Basins with capacity likely to be less than 25 % of NSW emissions over 50 years [2].

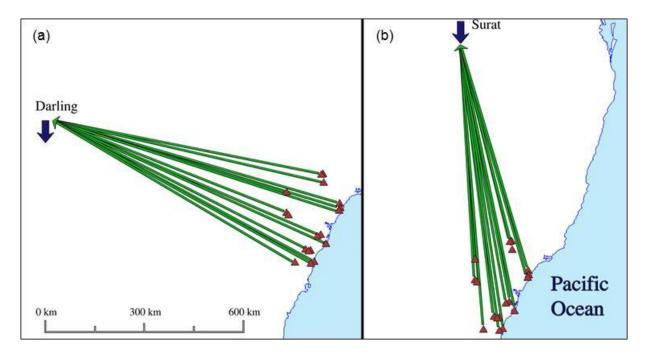


Figure 3: Examples of independent transport to (a) the Darling basin (A22/tonne CO₂ transported) and (b) the Surat basin (A19/tonne CO₂ transported).

Figure 4: Examples of network transport to (a) the Darling basin (A14/ tonne CO₂ transported) and (b) the Surat basin (A12/ tonne CO₂ transported).

Figure 5 shows the relationship between estimated CO_2 transport costs and the distance between emission sources and each of the storage basins considered. Because transport costs are almost linearly related to distance, the transport distance is one of the main drivers of costs. Note that transport costs to offshore basins are higher than those for onshore basins at the same distance from the emission sources because of the higher cost of construction of offshore pipelines.

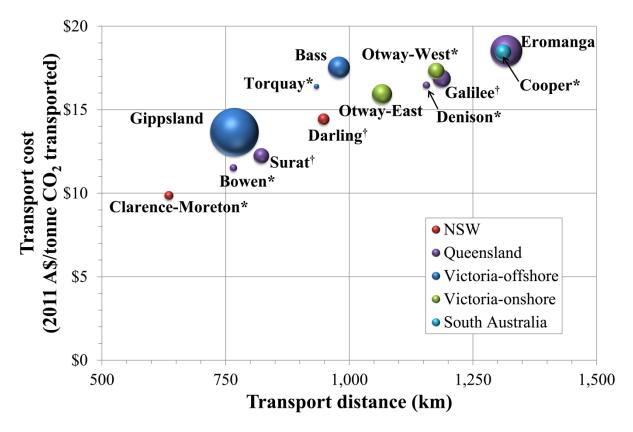


Figure 5: Relationship between network transport costs and distance for NSW emission sources. Bubble sizes indicate storage capacity. Basins indicated with (*) or (†) are unlikely to have capacity for 25 % of NSW emissions over 50 years [2].

3.Cost of CCS projects

According to the GCCSI, there are 76 planned or active large-scale (over 0.6 million tonnes of CO₂) CCS projects world-wide. The GCCSI reports that 16 of these projects are currently under operation while the remainder are in (1) the execution stage where the project is under construction, (2) the define stage where the project is undergoing a feasibility study, or, (3) the evaluation stage where the project is under investigation. This report summarises data for projects in the GCCSI database where costs are publicly available. In addition we have included data available for projects that have recently been cancelled and for three small pilot projects. Data was obtained from public domain sources including front-end engineering design (FEED) studies, company websites, public reports, conference and journal articles.

Tables 2 to 5 show the capital costs, the amount of CO_2 stored and other details of the projects. The capital costs shown in Table 2 are the actual reported capital costs of operational projects. Tables 3 and 4 show the estimated capital costs of projects under planning, while Table 5 shows the estimated capital costs for the recently cancelled projects. Yearly operating costs have not been reported except for the ROAD project (Table 4). In most cases, there is insufficient data to permit us to calculate the costs in dollars per tonne of CO_2 on a captured, transported, stored or avoided basis^a.

In Table 2, for the four projects where the amount of CO_2 stored is approximately 1 million tonnes or larger, capture (or separation) is an inherent part of the process. This applies to natural gas processing and the production of certain chemicals. Hence, the cost data shown is only for the CO_2 pipeline and storage facilities. For these projects, the capital costs range from US\$100 million to approximately US\$200 million. According to Torp and Brown [12], this translates to US\$17 to US\$20 per tonne of CO_2 stored for the Sleipner and Weyburn projects.

Table 2 also summarises capital cost data for three pilot scale oxyfiring power generation plants. For the Vattenfall and Callide Oxyfuel Project where the amount of CO_2 stored is 0.3 million tonnes, the costs for just the oxyfiring retrofit (i.e. without the pipeline or storage) are \in 90 million and A\$200 million respectively. For the Lacq pilot project, which has a smaller volume of CO_2 stored of 0.1 million tonnes per year, the capital costs for the oxyfiring together with the pipeline and storage facilities are \notin 60 million.

For three of the seven projects under execution shown in Table 3, CO_2 capture or separation is an inherent part of the process. The reported costs for the pipeline and storage are US\$200 million for the ADM Illinois Industrial CCS Project, US\$400 million for the Lost Cabin Gas Plant, and over A\$1 billion for the Gorgon project. The cost reported for the Gorgon project is much higher than the others because of the significantly larger volume of CO_2 stored (3 to 4 million tonnes per year compared to approximately 1 million tonnes). In Table 3, there are three CCS projects incorporating capture, transport and storage. The capital costs for the projects located at Boundary Dam and the Alberta Carbon Trunk Line, each involving the storage of about 1 million tonne per year of CO_2 , are of the order of C\$1 billion. For the project at Kemper County involving the storage of approximately 3.5 million tonnes of CO_2 , the capital cost is over US\$2.4 billion.

^a To enable the cost per tonne of CO_2 to be calculated, the capital and operating costs are required. Further, project specific data such as the length of the project life, the discount rate and the energy penalty are also needed. It is incorrect to divide the capital costs by the amount of CO_2 . Full details of the methodology are available in the CO2CRC Economic Methodology Report [6].

The projects under the define or evaluation phase (Table 4) all have estimated capital costs of over US\$1 billion. Most of these projects are for power generation. In contrast to the operating projects, the costs include capture as well as transport and storage. Note that because these projects are in the preliminary phases of development, the costs will have a high degree of uncertainty.

Table 5 summarises costs for three large-scale CCS projects that were under evaluation but have recently been cancelled: the AEP Mountaineer CCS Project, ZeroGen and Project Pioneer. Reported costs for these projects appear to fall within the range of other projects under development.

While it is not possible to estimate the cost per tonne of CO_2 for the majority of projects in Tables 2 to 5, there have been a number of recent generic engineering studies that have estimated total project costs for capturing, transporting and storing CO_2 [8,13,14]. From these studies, the indicative cost for fully integrated CCS projects range from A\$80 to A\$200 per tonne of CO_2 avoided. The levelised cost of electricity (LCOE) for CCS added to coal fired power plants falls in the range of A\$100 to A\$220 per MWh, which is similar to the range of costs for other low emission energy sources [15, 16]. These estimates are yet to be verified with real operating data.

From the data presented in the tables, it is clear that costs are high, variable and project specific. In general, costs are affected by:

- 1. CO₂ emission source and capture technology;
- 2. Degree of integration between the process plant and the capture plant;
- 3. Transport distance and network structure;
- 4. Storage site characteristics; and
- 5. Economic parameters such as the discount rate, project life, carbon price and fuel cost.

It is important to note that the costs shown in the tables may reflect the relatively early stage of development of CCS projects. As such, costs may decrease over time as technologies develop, project experience is gained and uncertainties reduce.

Table 2: Summary of operating CCS projects and capital cost data

Asset Lifecycle Stage	Project Name	Country	Volume CO ₂	Start Date	Facility Details	Capture Type	Transport Length	Transport Type	Storage Type	Capital co inclusions	
Operate	Weyburn- Midale Project [12]	Canada	3 Mtpa	2000	Synthetic Natural Gas	Pre- Combustion	315 km	Onshore pipeline	Enhanced Oil Recovery	US\$100m	Cap ≭ Pipe ✓ Stor ✓
Operate	In Salah CO ₂ Storage [17]	Algeria	1 Mtpa	2004	Natural Gas Processing	Pre- Combustion	14 km	Onshore pipeline	Onshore Deep Saline Formation	US\$100m	Cap ★ Pipe ✓ Stor ✓
Operate	Sleipner CO ₂ Injection [12]	Norway	1 Mtpa + 0.2 Mtpa	1996	Natural Gas Processing	Pre- Combustion	0 km (capture same as storage location)	Offshore pipeline	Offshore Deep Saline Formation	US\$100m	Cap ≭ Pipe ✓ Stor ✓
Operate	Snøhvit CO ₂ Injection [18]	Norway	0.7 Mtpa	2008	Natural Gas Processing	Pre- Combustion	150 km	Onshore pipeline	Offshore Deep Saline Formation	€150m	Cap ≭ Pipe ✓ Stor ✓
Operate	Lacq [19]	France	0.12 Mtpa	2010	30 MW Power Generation	Oxyfuel	27 km	Onshore pipeline	Depleted Onshore Gas Reservoir	€60m including power plant	Cap√ Pipe√ Stor√
Operate	Callide Oxyfuel Project [20]	Australia	0.3 Mtpa	2012 (oxyfiring mode)	30 MW Power Generation	Oxyfuel	Under consideration	Under consideration	Under consideration	A\$206m including retrofit	Cap ✓ Pipe ≭ Stor ≭
Operate	Vattenfall [17]	Germany	0.3 Mtpa	2008	30 MW Power Generation	Oxyfuel	Under consideration	Under consideration	Under consideration	€90m including retrofit	Cap✓ Pipe ★ Stor ★

Table 3 Summary of CCS projects under execution and the estimated capital cost

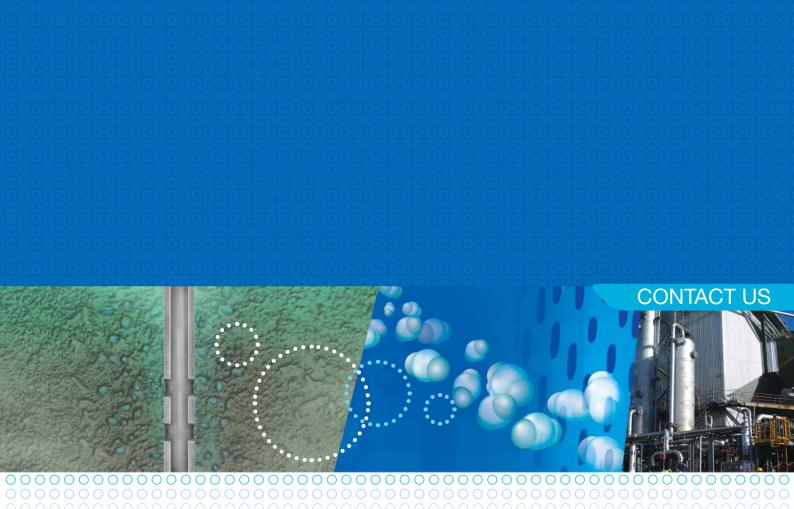
Asset Lifecycle Stage	Project Name	Country	Volume CO ₂	Start Date	Facility Details	Capture Type	Transpor t Length	Transport Type	Storage Type	Capital costs and inclusions	
Execute	Port Arthur Air Products Steam Methane Reformer EOR Project [17]	United States	1 Mtpa	2013	Hydrogen production	Pre- Combustion	Not specified	Onshore pipeline	Enhanced Oil Recovery	US\$431m	Cap✓ Pipe ≭ Stor ≭
Execute	ADM Illinois Industrial CCS Project [17]	United States	Up to 1 Mtpa	2013	Chemical Production	Industrial Separation	1.6 km	Onshore pipeline	Onshore Deep Saline Formations	US\$208m	Cap⊁ Pipe√ Stor√
Execute	Alberta Carbon Trunk Line with Agrium CO ₂ Stream [21]	Canada	0.585 Mtpa	2014	Fertiliser Production	Pre- Combustion	234 km	Onshore pipeline	Enhanced Oil Recovery	C\$1.2bn	Cap√ Pipe√ Stor√
Execute	Boundary Dam Integrated CCS Demonstration Project [17]	Canada	1 Mtpa	2014	Power Generation	Post- Combustion	100 km	Onshore pipeline	Enhanced Oil Recovery	C\$1.24bn	Cap√ Pipe√ Stor√
Execute	Kemper County [17]	United States	3.5 Mtpa	2014	Power Generation	Pre- Combustion	75 km	Onshore to onshore pipeline	Enhanced Oil Recovery	US\$2.4bn	Cap√ Pipe√ Stor√
Execute	Gorgon Carbon Dioxide Injection Project [21]	Australia	3.4 - 4 Mtpa	2015	Natural Gas Processing	Pre- Combustion	10 km	Onshore pipeline	Onshore Deep Saline Formations	A\$1-2bn	Cap ★ Pipe ✓ Stor ✓
Execute	Lost Cabin Gas Plant [17]	United States	1 Mtpa	2013	Natural Gas Processing	Pre- Combustion	370 km	Onshore pipeline	Enhanced Oil Recovery	US\$400m	Cap ★ Pipe ✓ Stor ★

Table 4 Summary of CCS projects under design and the estimated capital cost

Asset Lifecycle Stage	Project Name	Country	Volume CO ₂	Start Date	Facility Details	Capture Type	Transport Length	Transport Type	Storage Type	Capital cost inclusions	s and					
Define	Hydrogen Energy California	United States	2 Mtpa	2017	Power Generation	Pre- Combustion	6.4 km	Onshore pipeline	Enhanced Oil Recovery	US\$2.3bn	Cap√ Pipe√					
	Project (HECA) [17]	States			Generation	Combustion		pipelille	Recovery		Stor✔					
Define	Tenaska Trailblazer	United	5.75 Mtpa	Not	Power	Post- Combustion 201 – 250 F		- 001 060 km	201 – 250 km	201 – 250 km	201 – 250 km	201 - 250 km	Onshore	Enhanced Oil	US\$1.25bn	Cap✔ Pipe ≭
	Energy Center [32]	States		specified	Generation			pipeline	Recovery		Stor ×					
	Rotterdam Opslag en	Zuid-			Power	Post-		Onshore to	Offshore Depleted Oil	€210m (€25-31/yr operating costs)	Cap√					
Define	Afvang Demonstratiep roject (ROAD) [24]	Holland	1.1 Mtpa	2015	Generation	Combustion	≤50 km	offshore pipeline	and Gas Reservoirs		Pipe × Stor ×					
Evaluate	Full-scale CO ₂ Capture Mongstad (CCM) [17]	Norway	1 Mtpa	Not specified	Power Generation	Post- Combustion	Not specified	Onshore to offshore pipeline	Not specified	NOK6bn	Cap✓ Pipe✓ Stor✓					
	Details and							On share (s	Offshore	£840m capture	Cap√					
Evaluate	Peterhead Gas CCS Project [25]	United Kingdom	1 Mtpa	2016	Power Generation	Post- Combustion	Not specified	Onshore to offshore pipeline	Depleted Oil and Gas Reservoirs	£125m pipeline £220m storage	Pipe✓ Stor√					
	Wandoan		Australia Up to 2.5 Mtpa	2017	Power Generation	Pre- Combustion		i0 km Onshore pipeline	Onshore Deep Saline Formations	plant with	Cap√					
Evaluate	CCS Project [26]	Australia					≤50 km				Pipe ×					
										capture	Stor ×					

Table 5 Summary of recently cancelled CCS projects

Asset Lifecycle Stage	Project Name	Country	Volume CO ₂	Start Date	Facility Details	Capture Type	Transport Length	Transport Type	Storage Type	Capital costs and inclusions	
On hold/ Cancelled	AEP Moutaineer [27]	United States	1.5 Mtpa	N/A	Power Generation	Post- Combustion	19 km	Onshore pipeline	Onshore Deep Saline Formations	US\$665m capture US\$160m transport and storage	Cap✓ Pipe✓ Stor✓
Cancelled	ZeroGen [28]	Australia	2 Mtpa	N/A	Power Generation	Pre- Combustion	350 km	Onshore pipeline	Onshore Deep Saline Formations	US\$3.3bn IGCC with capture US\$736 m transport and storage	Cap✓ Pipe✓ Stor✓
Cancelled	Project Pioneer [29]	Canada	1 Mtpa	N/A	Power Generation	Post- Combustion	90 km	Onshore pipeline	Enhanced Oil Recovery	C\$640m capture C\$79m pipeline	Cap√ Pipe√ Stor ≭


4. Conclusions

Our analysis of the cost of pipeline networks suggests that using a network (or networks) for transport for CO_2 would reduce the cost by about a third compared to building pipelines for each emission source. Costs could be of the order of A\$10 to A\$20 per tonne of CO_2 transported from major emission sources in New South Wales to suitable storage sites in eastern Australia. These cost estimates are preliminary and may vary significantly as more detailed engineering and design is undertaken on specific networks. For example, in each scenario in this report, we assumed that all of the major CO_2 emissions from New South Wales were stored at one location. More work on optimisation of the whole system including the process plant and capture plant design and operations together with the pipeline network and potential storage locations may achieve further cost reductions. The objective of further studies should be to identify opportunities for development of state and national pipeline infrastructure to link major emissions sources from all states to the largest and most cost effective storage location(s) in any state.

As with all large-scale infrastructure projects, no individual company could justify the expenditure for a large-scale CCS project on their own, particularly at this stage of the technology development. For this reason there is a role for government in facilitating the infrastructure development. This includes supporting demonstration projects, developing the appropriate legislative and regulatory framework to stimulate CCS deployment, as well as supporting the reduction of technical, financial and social risks.

5.References

- 1. Department of Climate Change, National Greenhouse Inventory 2010, 2011.
- 2. Carbon Storage Taskforce, *National Carbon Mapping and Infrastructure Plan Australia: Concise Report*, 2009, Department of Resources, Energy and Tourism: Canberra.
- Allinson, W.G., Y. Cinar, W. Hou, and P.R. Neal, *The costs of CO₂ transport and injection in Australia*, 2009, School of Petroleum Engineering, The University of New South Wales, Sydney, Australia. CO2TECH Report Number RPT09-1536. Prepared for the Carbon Storage Taskforce, Department of Resources, Energy and Tourism, Canberra.
- 4. ACIL Tasman, Australian stationary energy emissions: an assessment of stationary energy emissions by location suitable for capture and storage, 2009, report prepared for the Carbon Storage Taskforce, Department of Resources, Energy and Tourism, Canberra.
- 5. NSW Trade & Investment Resources & Energy. *NSW Storage Capacity Project.* 2012 Available from: http://www.resources.nsw.gov.au/resources/low-emissions-coal/nsw-storage-capacity-project.
- 6. Ho, M., W.G. Allinson, P.R. Neal, G.A. Fimbres Weihs, D. Wiley, M. Richards, and G. McKee, *CO2CRC CCS Economic Methodology and Assumptions*, In *CO2CRC Publication Number RPT12-3490*2012, Cooperative Ressearch Centre for Greenhouse Gas Technologies: Sydney, Australia. p. 42.
- 7. IEA, IEA Technical and Financial Assessment Criteria: Criteria for Appraisal Studies, 2003, IEA/OECD: Paris.
- 8. Fimbres Weihs, G.A. and D.E. Wiley, *Steady-state design of CO*₂ *pipeline networks for minimal cost per tonne of CO*₂ *avoided.* International Journal of Greenhouse Gas Control, 2012. **8**: p. 150-168.
- 9. Gale, J. and J. Davidson, *Transmission of CO*₂ *Safety and economic considerations*. Energy, 2004. **29**(9-10): p. 1319-1328.
- 10. Allinson, W.G., D.T. Nguyen, and J. Bradshaw, *The economics of geological storage of CO*₂ *in Australia.* APPEA J., 2003. **43**(1): p. 623-636.
- 11. Allinson, G., R.E. Dunsmore, P.R. Neal, and M.T. Ho, *The cost of carbon capture and storage in the Perth region.* SPE Proj. Facil. & Const., 2007. **2**(3): p. 1-6.
- 12. Torp, T. and K. Brown, CO₂ underground storage costs as experienced at Sleipner and Weyburn, In International Conference Greenhouse Gas Control Technologies (GHGT7) 2004: Vancouver, Canada.
- 13. ZEP, *The cost of CO*₂ *capture, transport and storage. Post-demonstration CCS in the EU*, 2011, Zero Emission Platform.
- 14. Worley Parsons, *Economic assessment of carbon capture and storage technologies: 2011 update*, 2011, report prepared for the GCCSI.
- 15. ATSE, Low-carbon energy evaluation of new energy technology choices for electric power generation in Australia, 2010, report prepared for the Australian Academic of Technological Sciences and Engineering.
- 16. EPRI, *Australian Electricity Generation Technology Costs Reference Case 2010*, 2010, Electric Power Research Institute, report prepared for the Department of Resources, Energy and Tourism.
- 17. ZeroCO2. 2012 Available from: http://www.zeroco2.no/projects/list-projects/.
- 18. Karstad, O., Geological storage, including costs and risks, in saline aquifers, In IPCC workshop on carbon dioxide capture and storage 2002: Regina, Canada.
- 19. Monne, J., *Lacq CCS Integrated Pilot*, 2012, Total.
- 20. Speo, C. Callide Oxyfuel Project Feasibility Study, 2007, CS Energy, report prepared for CCSD.
- 21. Enhance Energy. 2012 Available from: http://www.enhanceenergy.com/q_a.
- 22. Chevron Australia. *Gorgon Gas Development*. 2012 Available from: www.gorgon.com.au.
- 23. Tenaska, *Tanaska Trailblazer FEED Study*, 2012, report prepared for the GCCSI.
- 24. ROAD, *ROAD FEED Report*, 2010, report prepared for the GCCSI.
- 25. Scottish Power Consortium, UK Carbon Capture and Storage Demonstration Competition FEED Close Out Report, 2011.
- 26. Wandoan Power, Wandoan Power Project Pre-feasibility Study Knowledge Sharing Report, 2011.
- 27. AEP, AEP Mountaineer CCS FEED Report. 2012, report prepared for the GCCSI.
- 28. Berly, T., ZeroGen: Low Emission Power with Carbon Storage, 2010.
- 29. Capital Power Corporation, *Project Pioneer Preliminary Economic Evaluation of Project Pioneer's Potential Impacts on the Alberta Economy*, 2011, report prepared for the GCCSI.

Canberra

Dr Richard Aldous Chief Executive

GPO Box 463, Canberra, ACT 2601 Ph: + 61 2 6120 1600 Fax: + 61 2 6273 7181 Email: raldous@co2crc.com.au

Melbourne

Dr Matthias Raab

Program Manager for CO₂ Storage School of Earth Science The University of Melbourne VIC 3010 Ph: +61 3 8344 4309 Fax: +61 3 8344 7761 Email: mraab@co2crc.com.au

Sydney

Prof Dianne Wiley Program Manager for CO₂ Capture The University of New South Wales UNSW Sydney, 2052 Ph: + 61 2 9385 4755 Email: dwiley@co2crc.com.au

Ms Carole Peacock

Business Manager GPO Box 463, Canberra, ACT 2601 Ph: + 61 2 6120 1605 Fax: + 61 2 6273 7181 Email: cpeacock@co2crc.com.au

Mr Barry Hooper

Chief Technologist Room 232/Level 2 School of Electrical & Electronic Engineering, The University of Melbourne, VIC 3010 Ph: + 61 3 8344 6622 Fax: + 61 3 9347 7438 Email: bhooper@co2crc.com.au

Adelaide

Prof John Kaldi Chief Scientist

Australian School of Petroleum The University of Adelaide, SA 5005 Ph: + 61 8 8303 4291 Fax: + 61 8 8303 4345 Email: jkaldi@co2crc.com.au

Mr Rajindar Singh

Otway Project Manager School of Earth Science The University of Melbourne VIC 3010 Ph: + 61 3 8344 9007 Fax: + 61 3 8344 7761 Email: rssingh@co2crc.com.au

Perth

Mr David Hilditch Commercial Manager (CO2TECH) PO Box 1130, Bentley Western Australia 6102 Ph: + 61 8 6436 8655 Fax: + 61 8 6436 8555 Email: dhilditch@co2crc.com.au

